Congenital Platelet Function Disorders


1.    Macaulay IC, Carr P, Gusnanto A, Ouwehand WH, Fitzgerald D, Watkins NA. Platelet genomics and proteomics in human health and disease. J Clin Invest 2005;115:3370-7.

2.    Kunicki TJ, Williams SA, Nugent DJ. Genetic variants that affect platelet function. Current Opin Hematol 2012;19:371-9.

3.    Munnix, I.C., et al., Store-mediated calcium entry in the regulation of phosphatidylserine exposure in blood cells from Scott patients. Thromb Haemost, 2003. 89(4): p. 687-95.

4.    Suzuki, J., et al., Calcium-dependent phospholipid scrambling by TMEM16F. Nature, 2010. 468(7325): p. 834-8.

5.    Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011;118:5996-6005.

6.    Nurden AT, Freson K, Seligsohn U. Inherited platelet disorders. Haemophilia 2012;18 Suppl 4:154-60.

7.    Berndt MC, Andrews RK. Bernard-Soulier syndrome. Haematologica 2011;96:355-9.

8.    Di Paola J, Johnson J. Thrombocytopenias due to gray platelet syndrome or THC2 mutations. Semin Thromb Hemost 2011;37:690-7.

9.    Jupe S, Akkerman JW, Soranzo N, Ouwehand WH. Reactome – a curated knowledgebase of biological pathways: megakaryocytes and platelets. J Thromb Haemost 2012.

10. Jones ML, Murden SL, Bem D, et al. Rapid genetic diagnosis of heritable platelet function disorders with next-generation sequencing: proof-of-principle with Hermansky-Pudlak syndrome. J Thromb Haemost 2012;10:306-9.

11. Lowe GC, Lordkipanidzé M, Watson SP, group TUGs. Utility of the ISTH Bleeding Assessment Tool in predicting platelet defects in participants with suspected inherited platelet function disorders. J Thromb Haemost 2013.

12.  Biss TT, Blanchette VS, Clark DS, et al. Quantitation of bleeding symptoms in children with von Willebrand disease: use of a standardized pediatric bleeding questionnaire. Journal of thrombosis and haemostasis. J Thomb Heamost 2010;8:950-6.

13. Kunicki TJ, Baronciani L, Canciani MT, et al. An association of candidate gene haplotypes and bleeding severity in von Willebrand disease type 2A, 2B, and 2M pedigrees. J Thromb Haemost 2006;4:137-47.

14. Israels SJ, El-Ekiaby M, Quiroga T, Mezzano D. Inherited disorders of platelet function and challenges to diagnosis of mucocutaneous bleeding. Haemophilia 2010;16 Suppl 5:152-9.

15. Israels SJ, Kahr WHA, Blanchette VS, Luban NLC, Rivard GE, Rand ML. Platelet disorders in children: A diagnostic approach. Pediatr Blood & Cancer 2011;56:975-83.

16. Cattaneo M, Cerletti C, Harrison P, et al. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J Thromb Haemost 2013.

17. Hayward CPM, Moffat KA, Raby A, et al. Development of North American consensus guidelines for medical laboratories that perform and interpret platelet function testing using light transmission aggregometry. Am J Clin Path 2010:955-63.

18. Johnson AD. The genetics of common variation affecting platelet development, function and pharmaceutical targeting. J Thromb Haemost 2011;9 Suppl 1:246-57.

19. Jones CI, Bray S, Garner SF, et al. A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood 2009;114:1405-16.

20. Gulácsy V, Freiberger T, Shcherbina A, et al. Genetic characteristics of eighty-seven patients with the Wiskott-Aldrich syndrome. Mol Immunol 2011;48:788-92.

21. Albers CA, Paul DS, Schulze H, et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nature Genetics 2012;44:435-9- S1-2.

22. Fox NE, Chen R, Hitchcock I, Keates-Baleeiro J, Frangoul H, Geddis AE. Compound heterozygous c-Mpl mutations in a child with congenital amegakaryocytic thrombocytopenia: functional characterization and a review of the literature. Exper Hematol 2009;37:495-503.

23. Geddis AE. Congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii. Hematol Oncol Clin North Am 2009;23:321-31.

24. Geddis AE. Congenital amegakaryocytic thrombocytopenia. Pediatr Blood & Cancer 2011;57:199-203.

25. Balduini CL, Pecci A, Noris P. Inherited thrombocytopenias. The evolving spectrum. Hämostaseologie 2012;32:259-70.

26. Noris P, Perrotta S, Seri M, et al. Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 2011;117:6673-80.

27. Jalagadugula G, Mao G, Kaur G, Goldfinger LE, Dhanasekaran DN, Rao AK. Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency. Blood 2010;116:6037-45.

28. Bluteau D, Glembotsky AC, Raimbault A, et al. Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood 2012;120:2708-18.

29. Sun L, Gorospe JR, Hoffman EP, Rao AK. Decreased platelet expression of myosin regulatory light chain polypeptide (MYL9) and other genes with platelet dysfunction and CBFA2/RUNX1 mutation: insights from platelet expression profiling. J Thromb Haemost 2007;5:146-54.

30. Heller PG, Glembotsky AC, Gandhi MJ, et al. Low Mpl receptor expression in a pedigree with familial platelet disorder with predisposition to acute myelogenous leukemia and a novel AML1 mutation. Blood 2005;105:4664-70.

31. Aneja K, Jalagadugula G, Mao G, Singh A, Rao AK. Mechanism of platelet factor 4 (PF4) deficiency with RUNX1 haplodeficiency: RUNX1 is a transcriptional regulator of PF4. J Thromb Haemost 2011;9:383-91.

32. Michaud J, Wu F, Osato M, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 2002;99:1364-72.

33. Nugent DJ. Immune thrombocytopenic purpura of childhood. Hematol Am Soc Hematol Educ Program 2006:97-103.

34. Nurden P, Gobbi G, Nurden A, et al. Abnormal VWF modifies megakaryocytopoiesis: studies of platelets and megakaryocyte cultures from patients with von Willebrand disease type 2B. Blood 2010;115:2649-56.

35. Nurden P, Nurden AT, La Marca S, Punzo M, Baronciani L, Federici AB. Platelet morphological changes in 2 patients with von Willebrand disease type 3 caused by large homozygous deletions of the von Willebrand factor gene. Haematologica 2009;94:1627-9.

36. Poon M-C, Rand ML, Jackson SC. 2B or not to be–the 45-year saga of the Montreal Platelet Syndrome. Thromb Haemost 2010;104:903-10.

37. Othman M. Platelet-type Von Willebrand disease: three decades in the life of a rare bleeding disorder. Blood Rev 2011;25:147-53.

38. Hamilton A, Ozelo M, Leggo J, et al. Frequency of platelet type versus type 2B von Willebrand disease. An international registry-based study. Thromb Haemost 2011;105:501-8.

39. Heath KE, Campos-Barros A, Toren A, et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Human Genetics 2001;69:1033-45.

40. Althaus K, Greinacher A. MYH-9 Related Platelet Disorders: Strategies for Management and Diagnosis. Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie 2010;37:260-7.

41.  Albers CA, Cvejic A, Favier R, et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 2011:1-3.

42. Gunay-Aygun M, Falik-Zaccai TC, Vilboux T, et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet 2011:1-3.

43. Kahr WH, Hinckley J, Li L, et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2012:1-3.

44. Vettore S, Scandellari R, Moro S, et al. Novel point mutation in a leucine-rich repeat of the GPIbalpha chain of the platelet von Willebrand factor receptor, GPIb/IX/V, resulting in an inherited dominant form of Bernard-Soulier syndrome affecting two unrelated families: the N41H variant. Haematologica 2008;93:1743-7.

45. Afrasiabi A, Lecchi A, Artoni A, et al. Genetic characterization of patients with Bernard-Soulier syndrome and their relatives from Southern Iran. Platelets 2007;18:409-13.

46. Miller JL, Lyle VA, Cunningham D. Mutation of leucine-57 to phenylalanine in a platelet glycoprotein Ib alpha leucine tandem repeat occurring in patients with an autosomal dominant variant of Bernard-Soulier disease. Blood 1992;79:439-46.

47. Raslova H, Komura E, Le Couedic J-P, et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 2004;114:77-84.

48. Krishnamurti L, Neglia JP, Nagarajan R, et al. Paris-Trousseau syndrome platelets in a child with Jacobsen's syndrome. Am J Hematol 2001;66:295-9.

49. Savoia A, Balduini CL, Savino M, et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood 2001;97:1330-5.

50. McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine 2011;90:1-18.

51. Kato T, Kosaka K, Kimura M, et al. Thrombocytopenia in patients with 22q11.2 deletion syndrome and its association with glycoprotein Ib-beta. Genet Med 2003;5:113-9.

52. Lawrence S, McDonald-McGinn DM, Zackai E, Sullivan KE. Thrombocytopenia in patients with chromosome 22q11.2 deletion syndrome. J Pediatr 2003;143:277-8.

53. Sandrock K, Zieger B. Current Strategies in Diagnosis of Inherited Storage Pool Defects. Transfus Med Hemother 2010;37:248-58.

54. Gunay-Aygun M, Huizing M, Gahl WA. Molecular defects that affect platelet dense granules. SemThrombHemost 2004;30  537-47.

55. Nurden A, Nurden P. Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 2011;9 Suppl 1:76-91.

56. Paterson AD, Rommens JM, Bharaj B, et al. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood 2010;115:1264-6.

57. Menasche G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000;25:173-6.

58. Sanal O, Ersoy F, Tezcan I, et al. Griscelli disease: genotype-phenotype correlation in an array of clinical heterogeneity. J Clin Immunol 2002;22:237-43.

59. Hergovich N, Aigner M, Eichler HG, Entlicher J, Drucker C, Jilma B. Paroxetine decreases platelet serotonin storage and platelet function in human beings. Clinical Pharmacol Therapeut 2000;68:435-42.

60. McCloskey DJ, Postolache TT, Vittone BJ, et al. Selective serotonin reuptake inhibitors: measurement of effect on platelet function. Translational Res 2008;151:168-72.

61. Ong HT, Ong LM, Tan TE, Chean KY. Cardiovascular effects of common analgesics. The Medical journal of Malaysia 2013;68:189-94.

62. McEwen BJ, Morel-Kopp M-C, Chen W, Tofler GH, Ward CM. Effects of omega-3 polyunsaturated fatty acids on platelet function in healthy subjects and subjects with cardiovascular disease. Semin Thromb Hemost 2013;39:25-32.

63. Demers C, Derzko C, David M, Douglas J, Canada SoOaGo. Gynaecological and obstetric management of women with inherited bleeding disorders. Int J Gynaecol Obstet 2006;95:75-87.

64. Rodeghiero F. Management of menorrhagia in women with inherited bleeding disorders: general principles and use of desmopressin. Haemophilia 2008;14 Suppl 1:21-30.

65. DiMichele DM, Hathaway WE. Use of DDAVP in inherited and acquired platelet dysfunction. Am J Hematol 1990;33:39-45.

66. Franchini M, Lippi G, Guidi GC. The use of recombinant activated factor VII in platelet-associated bleeding. Hematology (Amsterdam, Netherlands) 2008;13:41-5.

67. Poon M-C. The evidence for the use of recombinant human activated factor VII in the treatment of bleeding patients with quantitative and qualitative platelet disorders. Transfus Med Rev 2007;21:223-36.

68. Almeida AM, Khair K, Hann I, Liesner R. The use of recombinant factor VIIa in children with inherited platelet function disorders. Br J Haematol 2003;121:477-81.

69. Fox NE, Lim J, Chen R, Geddis AE. F104S c-Mpl responds to a transmembrane domain-binding thrombopoietin receptor agonist: proof of concept that selected receptor mutations in congenital amegakaryocytic thrombocytopenia can be stimulated with alternative thrombopoietic agents. Exp Hematol 2010;38:384-91.

70. Pecci A, Gresele P, Klersy C, et al. Eltrombopag for the treatment of the inherited thrombocytopenia deriving from MYH9 mutations. Blood 2010;116:5832-7

71. Del Vecchio, G.C., et al., Dyserythropoietic anemia and thrombocytopenia due to a novel mutation in GATA-1. Acta Haematol, 2005. 114(2): p. 113-6.

72. Nichols, K.E., et al., Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet, 2000. 24(3): p. 266-70.

73. Saultier, P., et al., Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants: ultrastructural and pathogenic features. Haematologica, 2017. 102(6): p. 1006-1016.

74. Schlegelberger, B. and P.G. Heller, RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM). Semin Hematol, 2017. 54(2): p. 75-80.

75. Noetzli, L., et al., Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet, 2015. 47(5): p. 535-538.

76. Zhang, M.Y., et al., Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet, 2015. 47(2): p. 180-5.

77. Fiore, M., C. Goulas, and X. Pillois, A new mutation in TUBB1 associated with thrombocytopenia confirms that C-terminal part of beta1-tubulin plays a role in microtubule assembly. Clin Genet, 2017. 91(6): p. 924-926.

78. Kunishima, S., et al., Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood, 2009. 113(2): p. 458-61.

79. Bottega, R., et al., ACTN1-related thrombocytopenia: identification of novel families for phenotypic characterization. Blood, 2015. 125(5): p. 869-72.

80. Kunishima, S., et al., ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet, 2013. 92(3): p. 431-8.

81. Stritt, S., et al., A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood, 2016. 127(23): p. 2903-14.

82. Manchev, V.T., et al., A new form of macrothrombocytopenia induced by a germ-line mutation in the PRKACG gene. Blood, 2014. 124(16): p. 2554-63.

83. Canault, M., et al., Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med, 2014. 211(7): p. 1349-62.

84. De Rocco, D., et al., Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim Biophys Acta, 2014. 1842(2): p. 269-74.

85. Fletcher, S.J., et al., SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects. J Clin Invest, 2015. 125(9): p. 3600-5.

86. Zhou, Y. and J. Zhang, Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome: from molecular genetics to clinical features. Ital J Pediatr, 2014. 40: p. 77.

87. Misceo, D., et al., A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat, 2014. 35(5): p. 556-64.

88. Turro, E., et al., A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Sci Transl Med, 2016. 8(328): p. 328ra30.